Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
Theor Appl Genet ; 136(6): 130, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37199762

RESUMEN

KEY MESSAGE: Genomic and genetic resources of G. mustelinum were effective for identifying genes for qualitative and quantitative traits. Gossypium mustelinum represents the earliest diverging evolutionary lineage of polyploid Gossypium, representing a rich gene pool for numerous desirable traits lost in cotton cultivars. Accurate information of the genomic features and the genetic architecture of objective traits are essential for the discovery and utilization of G. mustelinum genes. Here, we presented a chromosome-level genome assembly of G. mustelinum and developed an introgression population of the G. mustelinum in the background of G. hirsutum that contained 264 lines. We precisely delimited the boundaries of the 1,662 introgression segments with the help of G. mustelinum genome assembly, and 87% of crossover regions (COs) were less than 5 Kb. Genes for fuzzless and green fuzz were discovered, and a total of 14 stable QTLs were identified with 12 novel QTLs across four independent environments. A new fiber length QTL, qUHML/SFC-A11, was confined to a 177-Kb region, and GmOPB4 and GmGUAT11 were considered as the putative candidate genes as potential negative regulator for fiber length. We presented a genomic and genetic resource of G. mustelinum, which we demonstrated that it was efficient for identifying genes for qualitative and quantitative traits. Our study built a valuable foundation for cotton genetics and breeding.


Asunto(s)
Fibra de Algodón , Gossypium , Gossypium/genética , Mapeo Cromosómico , Fitomejoramiento , Sitios de Carácter Cuantitativo
3.
Front Plant Sci ; 13: 988647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212380

RESUMEN

Fruit branch angle (FBA), a pivotal component of cotton plant architecture, is vital for field and mechanical harvesting. However, the molecular mechanism of FBA formation is poorly understood in cotton. To uncover the genetic basis for FBA formation in cotton, we performed a genome-wide association study (GWAS) of 163 cotton accessions with re-sequencing data. A total of 55 SNPs and 18 candidate genes were significantly associated with FBA trait. By combining GWAS and transcriptome analysis, four genes underlying FBA were identified. An FBA-associated candidate gene Ghi_A09G08736, which is homologous to SAUR46 in Arabidopsis thaliana, was detected in our study. In addition, transcriptomic evidence was provided to show that gravity and light were implicated in the FBA formation. This study provides new insights into the genetic architecture of FBA that informs architecture breeding in cotton.

4.
Plants (Basel) ; 11(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684255

RESUMEN

With the promotion and popularization of machine cotton-picking, more and more attention has been paid to the selection of early-maturity varieties with compact plant architecture. The type of fruit branch is one of the most important factors affecting plant architecture and early maturity of cotton. Heredity analysis of the cotton fruit branch is beneficial to the breeding of machine-picked cotton. Phenotype analysis showed that the types of fruit branches in cotton are controlled by a single recessive gene. Using an F2 population crossed with Huaxin102 (normal branch) and 04N-11 (nulliplex branch), BSA (Bulked Segregant Analysis) resequencing analysis and GhNB gene cloning in 04N-11, and allelic testing, showed that fruit branch type was controlled by the GhNB gene, located on chromosome D07. Ghnb5, a new recessive genotype of GhNB, was found in 04N-11. Through candidate gene association analysis, SNP 20_15811516_SNV was found to be associated with plant architecture and early maturity in the Xinjiang natural population. The GhNB gene, which is related to early maturity and the plant architecture of cotton, is a branch-type gene of cotton. The 20_15811516_SNV marker, obtained from the Xinjiang natural population, was used for the assisted breeding of machine-picked cotton varieties.

5.
Adv Sci (Weinh) ; 8(7): 2002723, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854882

RESUMEN

Fusarium wilt (FW) disease of cotton, caused by the fungus Fusarium oxysporum f. sp. vasinfectum (Fov), causes severe losses in cotton production worldwide. Though significant advancements have been made in development of FW-resistant Upland cotton (Gossypium hirsutum) in resistance screening programs, the precise resistance genes and the corresponding molecular mechanisms for resistance to Fov remain unclear. Herein it is reported that Fov7, a gene unlike canonical plant disease-resistance (R) genes, putatively encoding a GLUTAMATE RECEPTOR-LIKE (GLR) protein, confers resistance to Fov race 7 in Upland cotton. A single nucleotide polymorphism (SNP) (C/A) in GhGLR4.8, resulting in an amino acid change (L/I), is associated with Fov resistance. A PCR-based DNA marker (GhGLR4.8SNP(A/C) ) is developed and shown to cosegregate with the Fov resistance. CRISPR/Cas9-mediated knockout of Fov7 results in cotton lines extremely susceptible to Fov race 7 with a loss of the ability to induce calcium influx in response to total secreted proteins (SEPs) of Fov. Furthermore, coinfiltration of SEPs with GhGLR4.8A results in a hypersensitive response. This first report of a GLR-encoding gene that functions as an R gene provides a new insight into plant-pathogen interactions and a new handle to develop cotton cultivars with resistance to Fov race 7.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium , Gossypium/genética , Mutación/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Glutamato/genética , Enfermedades de las Plantas/prevención & control
6.
Nat Genet ; 53(6): 916-924, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33859417

RESUMEN

Large-scale genomic surveys of crop germplasm are important for understanding the genetic architecture of favorable traits. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton is poorly understood. Here, we analyzed 3,248 tetraploid cotton genomes and confirmed that the extensive chromosome inversions on chromosomes A06 and A08 underlies the geographic differentiation in cultivated Gossypium hirsutum. We further revealed that the haplotypic diversity originated from landraces, which might be essential for understanding adaptative evolution in cultivated cotton. Introgression and association analyses identified new fiber quality-related loci and demonstrated that the introgressed alleles from two diploid cottons had a large effect on fiber quality improvement. These loci provided the potential power to overcome the bottleneck in fiber quality improvement. Our study uncovered several critical genomic signatures generated by historical breeding effects in cotton and a wealth of data that enrich genomic resources for the research community.


Asunto(s)
Fibra de Algodón , Genoma de Planta , Geografía , Gossypium/crecimiento & desarrollo , Gossypium/genética , Inversión Cromosómica/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Variación Genética , Genética de Población , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Filogenia , Especificidad de la Especie , Tetraploidía
7.
Int J Gen Med ; 14: 10257-10263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992440

RESUMEN

OBJECTIVE: To investigate the predictive value of PTEN and echocardiography in the treatment of heart failure with trimetazidine combined with metoprolol. METHODS: A total of 100 patients with coronary heart disease and HF who admitted to our hospital from August 2018 to August 2020 were enrolled into research. All patients received routine treatment according to the guidelines and were treated with trimetazidine and metoprolol for a total course of 6 months. Echocardiographic parameters and PTEN levels were measured at baseline and after treatment. The patients were divided into groups according to the quartile of basic PTEN level, and the total effective rates were compared. The echocardiographic parameters of patients with different prognosis were analyzed. Bivariate correlation analysis was used to evaluate the correlation between PTEN, echocardiography and treatment effect. RESULTS: Compared with that before treatment, the level of PTEN increased significantly after treatment (P < 0.01). According to the quartile of basic PTEN level, the total effective rate of patients with different levels of basic PTEN was was statistically different (P < 0.01). There was a linear correlation between the level of basic PTEN and the treatment effect, and the total effective rate of patients with high level of basic PTEN was higher than that of patients with low level of PTEN. Compared with before treatment, LVEF, SV, E/A and lvfs increased significantly after treatment (P < 0.01). There was a correlation between the basic echocardiographic parameters and the treatment effect of patients. The basic echocardiographic parameters of patients with poor prognosis were worse than those with good prognosis. PTEN expression in patients' serum was only positively correlated with E/A, but not with LVFE, SV and LVFS (P < 0.01). CONCLUSION: PTEN and echocardiographic parameters serve as a good method to evaluate the short-term therapeutic effect of trimetazidine combined with metoprolol in patients with heart failure.

8.
BMC Genomics ; 21(1): 431, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586283

RESUMEN

BACKGROUND: The low genetic diversity of Upland cotton limits the potential for genetic improvement. Making full use of the genetic resources of Sea-island cotton will facilitate genetic improvement of widely cultivated Upland cotton varieties. The chromosome segments substitution lines (CSSLs) provide an ideal strategy for mapping quantitative trait loci (QTL) in interspecific hybridization. RESULTS: In this study, a CSSL population was developed by PCR-based markers assisted selection (MAS), derived from the crossing and backcrossing of Gossypium hirsutum (Gh) and G. barbadense (Gb), firstly. Then, by whole genome re-sequencing, 11,653,661 high-quality single nucleotide polymorphisms (SNPs) were identified which ultimately constructed 1211 recombination chromosome introgression segments from Gb. The sequencing-based physical map provided more accurate introgressions than the PCR-based markers. By exploiting CSSLs with mutant morphological traits, the genes responding for leaf shape and fuzz-less mutation in the Gb were identified. Based on a high-resolution recombination bin map to uncover genetic loci determining the phenotypic variance between Gh and Gb, 64 QTLs were identified for 14 agronomic traits with an interval length of 158 kb to 27 Mb. Surprisingly, multiple alleles of Gb showed extremely high value in enhancing cottonseed oil content (SOC). CONCLUSIONS: This study provides guidance for studying interspecific inheritance, especially breeding researchers, for future studies using the traditional PCR-based molecular markers and high-throughput re-sequencing technology in the study of CSSLs. Available resources include candidate position for controlling cotton quality and quantitative traits, and excellent breeding materials. Collectively, our results provide insights into the genetic effects of Gb alleles on the Gh, and provide guidance for the utilization of Gb alleles in interspecific breeding.


Asunto(s)
Introgresión Genética , Gossypium/anatomía & histología , Sitios de Carácter Cuantitativo , Secuenciación Completa del Genoma/métodos , Mapeo Cromosómico , Aceite de Semillas de Algodón/análisis , Gossypium/química , Gossypium/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Tetraploidía
9.
Plant J ; 103(2): 677-689, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246786

RESUMEN

The two new world tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, are cultivated worldwide and are characterised by a high yield and superior fibre quality, respectively. Historical genetic introgression has been reported between them; however, the existence of introgression and its genetic effects on agronomic traits remain unclear with regard to independent breeding of G. hirsutum (Upland cotton) and G. barbadense (Pima cotton) elite cultivars. We collected 159 G. hirsutum and 70 G. barbadense cultivars developed in Xinjiang, China, along with 30 semi-wild accessions of G. hirsutum, to perform interspecific introgression tests, intraspecific selection analyses and genome-wide association studies (GWAS) with fibre quality and yield component traits in multiple environments. In total, we identified seven interspecific introgression events and 52 selective sweep loci in G. hirsutum, as well as 17 interspecific introgression events and 19 selective sweep loci in G. barbadense. Correlation tests between agronomic traits and introgressions showed that introgression loci were mutually beneficial for the improvement of fibre quality and yield traits in both species. In addition, the phenotypic effects of four interspecific introgression events could be detected by intraspecific GWAS, with Gb_INT13 significantly improving fibre yield in G. barbadense. The present study describes the landscape of genetic introgression and selection between the two species, and highlights the genetic effects of introgression among populations, which can be used for future improvement of fibre yield and quality in G. barbadense and G. hirsutum, respectively.


Asunto(s)
Introgresión Genética/genética , Variación Genética/genética , Gossypium/genética , Carácter Cuantitativo Heredable , China , Mapeo Cromosómico , Fibra de Algodón , Producción de Cultivos , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Gossypium/crecimiento & desarrollo
10.
New Phytol ; 226(6): 1738-1752, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32017125

RESUMEN

The cotton fibre serves as a valuable experimental system to study cell wall synthesis in plants, but our understanding of the genetic regulation of this process during fibre development remains limited. We performed a genome-wide association study (GWAS) and identified 28 genetic loci associated with fibre quality in allotetraploid cotton. To investigate the regulatory roles of these loci, we sequenced fibre transcriptomes of 251 cotton accessions and identified 15 330 expression quantitative trait loci (eQTL). Analysis of local eQTL and GWAS data prioritised 13 likely causal genes for differential fibre quality in a transcriptome-wide association study (TWAS). Characterisation of distal eQTL revealed unequal genetic regulation patterns between two subgenomes, highlighted by an eQTL hotspot (Hot216) that established a genome-wide genetic network regulating the expression of 962 genes. The primary regulatory role of Hot216, and specifically the gene encoding a KIP-related protein, was found to be the transcriptional regulation of genes responsible for cell wall synthesis, which contributes to fibre length by modulating the developmental transition from rapid cell elongation to secondary cell wall synthesis. This study uncovered the genetic regulation of fibre-cell development and revealed the molecular basis of the temporal modulation of secondary cell wall synthesis during plant cell elongation.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Pared Celular/genética , Fibra de Algodón , Redes Reguladoras de Genes , Gossypium/genética , Sitios de Carácter Cuantitativo/genética
12.
Plant Biotechnol J ; 2018 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-29476651

RESUMEN

Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.

13.
Plant Biotechnol J ; 15(11): 1374-1386, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28301713

RESUMEN

Gossypium hirsutum L. represents the largest source of textile fibre, and China is one of the largest cotton-producing and cotton-consuming countries in the world. To investigate the genetic architecture of the agronomic traits of upland cotton in China, a diverse and nationwide population containing 503 G. hirsutum accessions was collected for a genome-wide association study (GWAS) on 16 agronomic traits. The accessions were planted in four places from 2012 to 2013 for phenotyping. The CottonSNP63K array and a published high-density map based on this array were used for genotyping. The 503 G. hirsutum accessions were divided into three subpopulations based on 11 975 quantified polymorphic single-nucleotide polymorphisms (SNPs). By comparing the genetic structure and phenotypic variation among three genetic subpopulations, seven geographic distributions and four breeding periods, we found that geographic distribution and breeding period were not the determinants of genetic structure. In addition, no obvious phenotypic differentiations were found among the three subpopulations, even though they had different genetic backgrounds. A total of 324 SNPs and 160 candidate quantitative trait loci (QTL) regions were identified as significantly associated with the 16 agronomic traits. A network was established for multieffects in QTLs and interassociations among traits. Thirty-eight associated regions had pleiotropic effects controlling more than one trait. One candidate gene, Gh_D08G2376, was speculated to control the lint percentage (LP). This GWAS is the first report using high-resolution SNPs in upland cotton in China to comprehensively investigate agronomic traits, and it provides a fundamental resource for cotton genetic research and breeding.


Asunto(s)
Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Gossypium/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Biodiversidad , China , Mapeo Cromosómico , Fibra de Algodón , Genética de Población , Genoma de Planta/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
14.
BMC Genomics ; 17: 352, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27177443

RESUMEN

BACKGROUND: Since upland cotton was introduced into China during the 1920s-1950s, hundreds of inbreed cultivars have been developed. To explore the molecular diversity, population structure and elite alleles, 503 inbred cultivars developed in China and some foreign cultivars from the United States and the Soviet Union were collected and analyzed by 494 genome-wide SSRs (Simple Sequence Repeats). METHODS: Four hundred and ninety-four pairs of SSRs with high polymorphism and uniform distribution on 26 chromosomes were used to scan polymorphisms in 503 nation-wide upland cottons. The programming language R was used to make boxplots for the phenotypic traits in different environments. Molecular marker data and 6 fiber quality traits were analyzed by the method of MLM (mixed linear model) (P + G + Q + K) in the TASSEL software package on the basis of the population structure and linkage disequilibrium analysis. The loci of elite allelic variation and typical materials carrying elite alleles were identified based on phenotypic effect values. RESULTS: A total of 179 markers were polymorphic and generated 426 allele loci; the population based on molecular diversity was classified into seven subpopulations corresponding to pedigree origin, ecological and geographical distribution. The attenuation distance of linkage disequilibrium dropped significantly up to 0-5 cM. Association mapping for fiber quality showed that 216 marker loci were associated with fiber quality traits (P < 0.05) explaining 0.58 % ~ 5.12 % of the phenotypic variation, with an average of 2.70 %. Thirteen marker loci were coincident with other studies, and three were detected for the same trait. Seven quantitative trait loci were related to known genes in fiber development. Based on phenotypic effects, 48 typical materials that contained the elite allele loci related to fiber quality traits were identified and are widely used in practical breeding. CONCLUSIONS: The molecular diversity and population structure of 503 nation-wide upland cottons in China were evaluated by 494 genome-wide SSRs, and association mapping for fiber quality revealed known and novel elite alleles. The molecular diversity provides a guide for parental mating in cotton breeding, and the association mapping results will aid in the fine-mapping genes related to fiber quality traits and facilitate further studies on candidate genes.


Asunto(s)
Mapeo Cromosómico , Fibra de Algodón , Endogamia , Repeticiones de Microsatélite , Carácter Cuantitativo Heredable , Alelos , Cromosomas de las Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Variación Genética , Genética de Población , Genoma de Planta , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo Genético
15.
Zhonghua Nei Ke Za Zhi ; 49(2): 119-21, 2010 Feb.
Artículo en Chino | MEDLINE | ID: mdl-20356507

RESUMEN

OBJECTIVE: To evaluate the echocardiographic features of apical hypertrophic cardiomyopathy (ApHCM). METHODS: Twenty-seven patients with ApHCM including 21 men and 6 women, average age (42.7 +/- 5.1) years old were followed up from 1995 to 2008 to investigate the clinical, electrocardiographic and echocardiographic features. RESULTS: The major features of ECG were increased R amplitude (V(4) > V(5) > V(3)) and inverteted T wave (especially in V(3-5) leads and the voltage of the inverteted T waves may be up to >/= 10 mm). The major feature of echocardiography was the thickening of left ventricular apical wall to 15 - 37 (18.0 +/- 3.3) mm. The final follow up showed that the mean thickness of the apical wall was (19.7 +/- 3.7) mm. The ratio of the thickness of left ventricular apical wall to posterior wall before and after the follow up was 1.7 +/- 0.3 and 1.9 +/- 0.9 respectively, with significant statistical difference (P < 0.05). There was no difference in the left ventricular end-diastolic dimension and left ventricular ejection fraction. The main cardiovascular events were atrial fibrillation (16 cases), heart failure of NYHA III-IV class (3 cases), anterior wall myocardial infarction (1 case) and sudden death (1 case). CONCLUSIONS: The final diagnosis of ApHCM depends on the characteristic inverteted T wave in ECG and apical hypertrophy in echocardiography. The prognosis of ApHCM is rather good for its progression is relatively slow.


Asunto(s)
Cardiomiopatía Hipertrófica , Ecocardiografía , Electrocardiografía , Estudios de Seguimiento , Ventrículos Cardíacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...